I would like to use gpu-accelerated tf/keras on fedora-35. For this I installed cuda-11-5 from rpmfusion and installed a dedicated (ana)conda env ‘automl’ on a fresh miniconda.
Cuda seems to be up and running:
$ nvidia-smi
Sun Nov 7 12:11:29 2021
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 495.44 Driver Version: 495.44 CUDA Version: 11.5 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... Off | 00000000:01:00.0 On | N/A |
| 30% 35C P8 15W / 160W | 904MiB / 5926MiB | 1% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 4480 G /usr/libexec/Xorg 431MiB |
| 0 N/A N/A 5292 G /usr/bin/kwin_x11 92MiB |
| 0 N/A N/A 5349 G /usr/bin/plasmashell 137MiB |
| 0 N/A N/A 5786 G /usr/bin/nextcloud 11MiB |
| 0 N/A N/A 5841 G ...akonadi_archivemail_agent 2MiB |
| 0 N/A N/A 5849 G .../akonadi_mailfilter_agent 2MiB |
| 0 N/A N/A 5853 G ...n/akonadi_sendlater_agent 2MiB |
| 0 N/A N/A 5854 G ...nadi_unifiedmailbox_agent 2MiB |
| 0 N/A N/A 5969 G /usr/lib64/firefox/firefox 213MiB |
| 0 N/A N/A 8017 G /usr/lib64/firefox/firefox 1MiB |
+-----------------------------------------------------------------------------+
However:
$ conda activate automl
(automl) [tpasch@redsnapper automl-in-action-notebooks]$ python
Python 3.9.7 | packaged by conda-forge | (default, Sep 29 2021, 19:20:46)
[GCC 9.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from tensorflow.python.client import device_lib
>>> device_lib.list_local_devices()
2021-11-07 12:13:43.836762: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 13378765430595217633
]
Is there anyone here that is already using fedora-35 with tf-gpu/cuda?